The conformational stability and thermodynamics of Fur A (ferric uptake regulator) from Anabaena sp. PCC 7119.
نویسندگان
چکیده
Fur (ferric uptake regulator) is a key bacterial protein that regulates iron acquisition and its storage, and modulates the expression of genes involved in the response to different environmental stresses. Although the protein is involved in several regulation mechanisms, and members of the Fur family have been identified in pathogen organisms, the stability and thermodynamic characterization of a Fur protein have not been described. In this work, the stability, thermodynamics and structure of the functional dimeric Fur A from Anabaena sp. PCC 7119 were studied by using computational methods and different biophysical techniques, namely, circular dichroism, fluorescence, Fourier-transform infrared, and nuclear magnetic resonance spectroscopies. The structure, as monitored by circular dichroism and Fourier-transform infrared, was composed of a 40% of alpha-helix. Chemical-denaturation experiments indicated that Fur A folded via a two-state mechanism, but its conformational stability was small with a value of DeltaG = 5.3 +/- 0.3 kcal mol(-1) at 298 K. Conversely, Fur A was thermally a highly stable protein. The high melting temperature (Tm = 352 +/- 5 K), despite its moderate conformational stability, can be ascribed to its low heat capacity change upon unfolding, DeltaCp, which had a value of 0.8 +/- 0.1 kcal mol(-1) K(-1). This small value is probably due to burial of polar residues in the Fur A structure. This feature can be used for the design of mutants of Fur A with impaired DNA-binding properties.
منابع مشابه
Biochemical analysis of the recombinant Fur (ferric uptake regulator) protein from Anabaena PCC 7119: factors affecting its oligomerization state.
Fur (ferric uptake regulator) protein is a DNA-binding protein which regulates iron-responsive genes. Recombinant Fur from the nitrogen-fixing cyanobacterium Anabaena PCC 7119 has been purified and characterized, and polyclonal antibodies obtained. The experimental data show that Fur from Anabaena dimerizes in solution with the involvement of disulphide bridges. Cross-linking experiments and MA...
متن کاملHeme binds to and inhibits the DNA-binding activity of the global regulator FurA from Anabaena sp. PCC 7120.
Heme is an iron-containing cofactor that aside from serving as the active group of essential proteins is a key element in the control of many molecular and cellular processes. In prokaryotes, the family of Fur (ferric uptake regulator) proteins governs processes essential for the survival of microorganims such as the iron homeostasis. We show that purified recombinant FurA from Anabaena sp. PCC...
متن کاملOverexpression of FurA in Anabaena sp. PCC 7120 reveals new targets for this regulator involved in photosynthesis, iron uptake and cellular morphology.
Previous genomic analyses of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 have identified three ferric uptake regulator (Fur) homologs with low sequence identities and probably different functions in the cell. FurA is a constitutive protein that shares the highest homology with Fur from heterotrophic bacteria and appears to be essential for in vitro growth. In this study...
متن کاملIdentification of three novel antisense RNAs in the fur locus from unicellular cyanobacteria.
The interplay between Fur (ferric uptake regulator) proteins and small, non-coding RNAs has been described as a key regulatory loop in several bacteria. In the filamentous cyanobacterium Anabaena sp. PCC 7120, a large dicistronic transcript encoding the putative membrane protein Alr1690 and an α-furA RNA is involved in the modulation of the global regulator FurA. In this work we report the exis...
متن کاملNew insights into the role of Fur proteins: FurB (All2473) from Anabaena protects DNA and increases cell survival under oxidative stress.
Fur (ferric uptake regulator) is a prokaryotic transcriptional regulator that controls a large number of genes mainly related to iron metabolism. Several Fur homologues with different physiological roles are frequently found in the same organism. The genome of the filamentous cyanobacterium Anabaena (Nostoc) sp. PCC 7120 codes for three different fur genes. FurA is an essential protein involved...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 89 6 شماره
صفحات -
تاریخ انتشار 2005